Global Projections of 21st Century Land-Use Changes in Regions Adjacent to Protected Areas
نویسندگان
چکیده
The conservation efficiency of Protected Areas (PA) is influenced by the health and characteristics of the surrounding landscape matrix. Fragmentation of adjacent lands interrupts ecological flows within PAs and will decrease the ability of species to shift their distribution as climate changes. For five periods across the 21(st) century, we assessed changes to the extent of primary land, secondary land, pasture and crop land projected to occur within 50 km buffers surrounding IUCN-designated PAs. Four scenarios of land-use were obtained from the Land-Use Harmonization Project, developed for the Intergovernmental Panel on Climate Change's Fifth Assessment Report (AR5). The scenarios project the continued decline of primary lands within buffers surrounding PAs. Substantial losses are projected to occur across buffer regions in the tropical forest biomes of Indo-Malayan and the Temperate Broadleaf forests of the Nearctic. A number of buffer regions are projected to have negligible primary land remaining by 2100, including those in the Afrotropic's Tropical/Subtropical Grassland/Savanna/Shrubland. From 2010-2050, secondary land is projected to increase within most buffer regions, although, as with pasture and crops within tropical and temperate forests, projections from the four land-use scenarios may diverge substantially in magnitude and direction of change. These scenarios demonstrate a range of alternate futures, and show that although effective mitigation strategies may reduce pressure on land surrounding PAs, these areas will contain an increasingly heterogeneous matrix of primary and human-modified landscapes. Successful management of buffer regions will be imperative to ensure effectiveness of PAs and to facilitate climate-induced shifts in species ranges.
منابع مشابه
Assessment of future changes in water availability and aridity.
Substantial changes in the hydrological cycle are projected for the 21st century, but these projections are subject to major uncertainties. In this context, the "dry gets drier, wet gets wetter" (DDWW) paradigm is often used as a simplifying summary. However, recent studies cast doubt on the validity of the paradigm and also on applying the widely used P - E (precipitation - evapotranspiration)...
متن کاملPredicting Changes of the Cultivation Areas for Astamaran and Berhi Cultivars in Iran in the 21st Century
Dates are one of the most important agricultural products exported from Iran. This plant is sensitive to environmental conditions and is not able to live and reproduce in all hot and dry areas in terms of quantity and quality. Dates have different varieties; each of them has the potential to adapt to a region of arid regions and can have the most production and economic yield in its proper plac...
متن کاملProtected areas' role in climate-change mitigation.
Globally, 15.5 million km(2) of land are currently identified as protected areas, which provide society with many ecosystem services including climate-change mitigation. Combining a global database of protected areas, a reconstruction of global land-use history, and a global biogeochemistry model, we estimate that protected areas currently sequester 0.5 Pg C annually, which is about one fifth o...
متن کاملClimate and land use change impacts on global terrestrial ecosystems and river flows in the HadGEM2-ES Earth system model using the representative concentration pathways
A new generation of an Earth system model now includes a number of land-surface processes directly relevant to analyzing potential impacts of climate change. This model, HadGEM2-ES, allows us to assess the impacts of climate change, multiple interactions, and feedbacks as the model is run. This paper discusses the results of centuryscale HadGEM2-ES simulations from an impacts perspective – spec...
متن کاملLand-use change outweighs projected effects of changing rainfall on tree cover in sub-Saharan Africa.
Global change will likely affect savanna and forest structure and distributions, with implications for diversity within both biomes. Few studies have examined the impacts of both expected precipitation and land use changes on vegetation structure in the future, despite their likely severity. Here, we modeled tree cover in sub-Saharan Africa, as a proxy for vegetation structure and land cover ch...
متن کامل